
N76-23886

NASA CR-144989

M
ANOPP PROGRAM~ING AND DOCUMENTATION STANDARDS DOCUMENT

(NISA-CF-144989) ANOfP PROGRAMMING AND
DOCUMENTATION STANDISIS DOCUMENT (Control
Data Corp., Hampton, Va.) 65 p He $4.50

aSCL 09E Unclas
G3/61 40079

Prepared under Contract No. NASl-13983 by
CONTROL DATA CORPORATION
3217 N. Armistead Avenue

Hampton, VA 23690

for

NATIONAL AERONAUTICS &SPACE ADMINISTRATION





TABLE OF CONTENTS

Section

3. 0 ANOPP STANDARDS

1.1 SCOPE

L 2 DESIGN

1.2.1 Hodule Standards

1.2.2 Depth of Design

1.2.3 Logic Structures

1.2.3.1 Simple Sequence Structure

1.2.3.1.1 Logical Flow Diagram

1.2.3.1.2 Description

1.2.3.2 IF THEN/ELSE Structure

1. 2.3.2.1 LogicalFlmv Diagram

1.2.3.2.2 Description

1.2.3.3 DO WHILE/DO UNTIL Structure

1.2.3.3.1 DO I.JHILE Logical Flow Diagram

1.2.3.3.2 DO ~.JHILE Description

1.2.3.3.3 DO UNTIL Logical Flo"7 Diagram

1.2.3.3.4· DO UNTIL Description

1.2.3.4 Case Structure

1.2.3.4.1 Logical Flow Diagram

1.2.3.4.2 Description

1.2.4 Design Documentation

1.2.4.1 Hierarchy Charts

1.2.4.2 Chapin Charts

1.2.4.3 Pseudo Code

1. "1"~"

L2~1

1,2 .. 6

1.2-6

1.2·-6

L 2--7

1. 2-- 7

1.2-7

1. 2-8

1.2-·8

1.2'·9

1 fl 2<--·~9

1. 2·~il

1. 2->17



TABLE OF CONTENTS

Section

1.3 CODING

1. 3.1 Source Code Documentation

1. 3. 2 FORTRAN Language Standards

1.3.2.1 Machine Independence

1.3.2.2 Structured FORTRAN

1.3.2.2.1 Simple Sequence

1.3.2.2.2 IF THEN/ELSE

1.3.2.2.3 Case

1.3.2.2.4 DO WHILE and DO UNTIL

1.3.2.2.5 Continue

1. 3. 3 Assembly Language Standards

1.3.3.1 General Rules

1.3.3.2 COMPASS/FORTRAN Interface

1.4 TESTS

1.4.1 Desk Checking

1.4.2 Component Testing

1.4.3 Integration Testing

1.4 0 4 System Tests

1.5 PUBLISHABLE DOCUMENTATION

1.5.1 Types OF Publishable Documentation

1.5.1.1 Programmer's Manual

1.5.1.2 Theoretical Manual

1.5.1.3 User's Manual

1.3-1

1.3-1

1.3~5

1.3-6

1. 3-10

1. 3-11

1. 3-11

1. 3-12

1. 3-15

1. 3-15

1. 3-17

1. 3-17

1. 3-18

1.4-1

1.4-1

1.4-1

1.4-2

1.4-3

1.5-1

1.5-1

1.5-1

1.5-2

1.5-2



TABLE OF CONTENTS

Section

1.5.1.4 Demonstration Problem Manual

L 5.2 Publishable Hanual Preparation

1.5.2.1 General

1.5.2.2 Spacing

1.5.2.3 Section Numbering

1.5.2.4 Page Numbering and Running Headings

1.5.2.5 Equations

1.5.2.6 Tables, Figures, and References

1.5.2.7 Capitalization

1.5.2.8 Punctuation

1.5.3 Changes to Baseline Manuals

105--':'

1 t;_"
.~ .5

1.5-4

1.5-5

1 5-6

1.5-8

1.5-9

1.5--11

1.5-11

1.5-11





M~OPP STANDARDS

1.1 SCOPE

These standards define the requirements for preparing software

for the Aircraft Noise Prediction Program (ANOPP). It is the intent of

these standards to provide definition, design, coding, and documentation

criteria for the achievement of a unity among ANOPP products.

These standards apply to all of ANOPP's standard software system.

The standards as expressed in this publication encompass philosophy

as well as techniques and conventions.

1.1-1





ANOPP STANDARDS

102 DESIGN

1 0 2.1 Module Standards

The Aircraft Noise Prediction Program will utilize the concepts

of "composite design" for program structure. Composite design involves

the construction of a program in terms of modular structure and module

interfaces 0

A module is a group of program statements that can receive input

data, perform one or more transformations on that data, and return output

data o The modules for ANOPP will have the following general character­

istics.

ao The executable and comment statements for the module can be

listed contiguously 0

b. The statements are enclosed by identifiable boundaries; e.g.,

in FORTRAN, from a PROGRAM or SUBROUTINE card to an END card.

c. The statements are considered to be a discrete and identifiable

entity that can be referenced by the module name.

d. The module can be referenced from other parts of the program

only by the module name or its single entry.

e. The module will have a single, common entry and a single,

common exit.

f. The module can reference or CALL other modules, suspend its

execution upon encountering the CALL statement and resume

execution with the next immediate statement.

1. 2-1



ANOPP STANDARDS

g. All called modules must return to their caller at the statement

immediately following the call statement.

A module has three attributes: function, logic, and interfaces.

For a composite design, a module should be described by its functions;

i.e., what happens when the module is called. This characteristic can

be described as data flow through the program. A functional description

of a module should contain a verb, such as, "Find Largest Block".

A module's logic describes the internal working or data flow within a

module. Another attribute of a module, interconnection or interface,

is concerned with module communication.

ANOPP modules will be designed to be as functionally independent

as possible with minimum interface. Reliability, ease of understanding,

and ease of maintenance are the objectives of these standards.

Guidelines to be followed to achieve the standards of modularity

for ANOPP are:

a. Simplicity - Use the simplest solution, design and/or interface

that is possible.

b. Design efficiency - Design a module to solve the current problem

efficiently; i.e., never design a module to do more than it

is required to do.

c. Aligned control and effect - Align modules and decisions in

modules so modules that are directly affected by a decision

are beneath and controlled by the module containing the decision.

d. High strength - Maximize binding, the relationships among the

1.2-2



DESIGN

elements of a module 0 For high strength or binding modules

should:

1. have all elements related to the performance of a single

function,

2. have a single entry and a single exit,

3. have a function which is easy to describe,

4. be independent from other modules,

5. be unsusceptible to errors from complex design and coding,

6. be usable by other programs,

7. and be modifiable without affecting other modules.

e. Low interconnection - Minimize coupling, the relationships

between modules. To attain the desired low interconnection

or loose coupling, modules should:

1. not directly reference other modules to:

(a) modify a program statement,

(b) refer to data in another module,

(c) branch directly into another module, or

(d) physically reside within another module,

2 0 not pass control information to other modules,

3. use only the following types of data interconnections:

(a) argument lists,

(b) common areas, and

(c) data base members.

f. Size - Limit the size of a module to 100 lines of executable

1.2-3



ANOPP STANDARDS

source language statements. Clarity, simplicity and understanding

are related to module size.

1.2.2 Depth of Design

Program structuring involves an analysis of the problem, the flow

of data through the problem, and the transformations that occur on that

data. Equally. it involves identification and definition of modules to

solve the problem. The phases of program structuring involve:

a. definition of the structure of the problem,

b. identification of the input and output in the problem.

c. identification of the points of entry and exit for data,

d. reduction of the problem into a set of subordinate modules.

A graphic representation of a module and subordinate modules will

result in a hierarchy of modules. The graphic representation is called a

"hierarchy chart" and should be drawn to illustrate the problem's

solution.

After the problem has been reduced into a set of subordinate modules,

the process is repeated viewing each subordinate module as an independent

problem that can be reduced into other subordinate modules" Some rules

to follow are:

a. The entire structure should be constantl.y reviewed to take

advantage of modules that are identical.

b. A module must be completely analyzed before its subordinates

102-4



DESIGN

can be analyzed.

c. The order in which modules at the same level are analyzed and

reduced is not important. It is not necessary to analyze a

module and all of its subordinates ·before starting another module.

Conditions for terminating this iterative reduction process are:

a. When a module can be reduced no further into independent

functional modules.

b. When further reduction of a module leads to the undesirable

attributes of low strength and high interconnections; i.e.,

low binding and high coupling.

c. When the logic of a module can be completely visualized;

i.e., usually resulting in less than 100 executable statements.

d. When further reduction leads to highly specialized, unaligned,

and inefficient sets.

e. When the resulting documentation (Chapin-style charts) can

be drawn on two or less sheets of 8-1/2" x 1111 paper. (One

page is the desirable objective.)

The final design phase of a module should follow these steps:

a o A Chapin chart should be drawn to illustrate the module's

logic structure.

b. Documentation should be set down to define the module's purpose,

functions, inputs, and outputs. This constitutes the first

portion of the module's prologue and is intended to be included

with the source statement listing.

1.2-5



ANOPP STANDARDS

c. A "walk through" of the module should be staged by the design

team to insure workability.

d. Pseudo code reflecting the logic structure outlined by the

Chapin chart should be completed. This completes the module's

prologue.

102.3 Logic Structures

All of the ANOPP modules will be logically designed so the execution

flow will be sequential from one logic structure to the next logic

structure. ANOPP module design will use four basic logic structures.

Coding of a logic structure may require more than one executable source

statement. No matter how complex the particular structure, upon completion

of its execution, the next structure will be executed. This sequential

flow logic is characteristic of "top-down" design. The four logic

structures are defined with traditional graphics in the following paragraphs

for educational value and comparison with the ANOPP standard Chapin

charts.

1.2.3.1 Simple Sequence Structure

1.2.3.1.1 Logical Flow Diagram

~stateme~

~
statement

\ I

1.2-6



DESIGN

102.3.1.2 Description

Each statement within the structure is simple in that it performs

one basic function; e.g., an assignment of an evaluated expression to

a variable or a call to another module (or subordinate)o

1.2.3.2 IF THEN/ELSE Structure

1.2.3.2.1 Logical Flow Diagram

o
~I

I

.1.

)~
ELSE (False) ~ '" ~IHEN (True)I ~Hl/-----1

~~ogiC I Logic
Structure(s) I Structure(s)

__B_l_O_Ck_2,- -" L __B_10_C._k----,1r--- _

I
_____.1

1.2.3.2.2 Description

-.1

The IF THEN/ELSE structure describes the flmv sequence that occurs

Hhen there are two blocks of logic structure(s) and only one block

should be executed according to a decision criteria or condition.

The condition is a simple or a complex logical expression which has

a value of True or False. If upon execution the condition is True,

1.2-7



ANOPP STANDARDS

the logic structure(s) of Block 1 (the THEN path) is(are) executed.

If the condition is False, the logic structure(s) of Block 2 (the ELSE

path) is (are) executed. \~Then the last logic structure in the chosen

path has been executed, control goes to the next logic structure or

statement follmving the IF THEN/ELSE structure. This logic structure

adheres to the "top-down" design in that the common entry is the l.

at ,-,rGel1 the condition 1.3 tested and the common exit leads to the Hext

1() struc'i:ureo

1.\J2,,3~3 DO \-J1-IILE/DO UNTlI.A Strllcture

DO Hl!ILE Logical

s2,,~~'~ 3,,2 DO ~I\JHILE Description.

Logic
Structure(s)
Block

T..~._----------_.
~I

" b:Lock of logic structure(s) which mayor may not be executed

,y,,: more times depend:~ng on a given condition is described by tb.e DO \N'BILF

8t~(UctuI'en The loop structure ad11eres to g~top-do\"Nn~u design i'n that

the J.oop is entered at one point and flow within the loop progresses

1.2.-8



DESIGN

to one common exit point; i.e., the point at which the condition is

tested. The condition is a simple or complex logical expression which

has a value of True or False. The condition is tested at the beginning

of the loop, before the execution of the logic structure(s) block, and

if True the logic structure(s) is(are) executed. When execution of the

logic structure(s) is(are) complete, control returns to the beginning of

the loop and the condition is tested againQ Looping continues until the

condition is False; control then passes to the next logic structure

following the DO WHILE structure.

1.2.3.3.3 DO UNTIL Logical Flow Diagram

Logic
Structure(s)
Block

_F"",""""""=-_--<
~dition

"
~True

1.2.3,3.4 DO UNTIL Description

A block of logic structure(s) which will be executed one or more

times depending on a given condition is described by the DO UNTIL

1. 2-9



ANOPP STANDARDS

toop structure. The structure adheres to the "top-dmvnH design in that

the loop is entered at one point and flow within the loop progresses to

one common exit point; i.e., the point at which the condition is tested.

The condition is a simple or a complex logical expression 1-vhieh has

a value of True or False. The condition is tested at the end of the

loop, after the execution of the logic sturcture(s) block, and if

False the logic structure(s) block is executed again. This continues until

the condition tested is True; control then passes to the next logic

structure following the DO UNTIL structure.

1.2.3.4 CASE Structure

I
I Logic

'ti~:1 Structure(s)
. ~con~ Block 1

~·t~O~- -
conu~ !

102.3.4.1 Logical Flow Diagram
I.'

/
/

if"

/

1. 2-10



DESIGN

1.2.3.4.2 Description

The CASE logic structure describes the flow sequence that develops

when there are two or more blocks of logic structures, only one of which will

be executed according to a given condition or decision criteria. The

condition when evaluated must have a resulting value identical to one

and only one of the conditions given (i.e0, condition 1, condition 2,

•••• , condition n). Control will pass to the beginning of the logic

structure's block identified by the matching condition. Upon completion

of the chosen block, control will pass to the next logic structure

following the CASE structure. The CASE structure adheres to the "top-

down" design in that the structure is entered at one point, the test

condition point, and after execution of the chosen block, control passes

to one common exit and the next logic structure.

1.2.4 Design Documentation

The design phase should result in a description of the structure

of the program with descriptions of the module and intermodule interfaces.

For the ANOPP project, the design phase will result in (1) hierarchy

charts of the areas of the program, (2) Chapin charts with external

specifications (module prologue) for each module depicted on the hierarchy

charts and (3) pseudo code.

1.2.4.1 Hierarchy Charts

A hierarchy chart will depict the results of the composite analysis



ANOPP STANDARDS

process (top-down reasoning - structural process). This creative

process is necessary to arrive at the modular logic and involves the

analysis of the problem, the flow of data through the problem, and

subdivision of the problem into modules that will perform transformations

on the data.

A hierarchy chart depicts each module, the level of the module

(order), and the lines of communication for the module. In its optimal

form, a heirarchy chart should be contained on one page (Figure 1).

As an area can have several levels of modules, it may be necessary to

place a module with its subsequent levels on additional pages; however,

all subordinate modules on the same level should be placed on the same

page. In the example illustrated in Figures 2 and 3, five levels of

modules are necessary. The submodules of the module "Control to Next

Level" (Level 3) could not be depicted on the same page and were sub­

sequently placed on an additional page.

Each module will have a short title, descriptive of its function,

anG a name that is used to reference the module.o Hodule names should.

be descriptive of the function.

Figure 4 is an example of a hierarchy chart depicting levels,

short titles, and nameso

1.2-12



DESIGN

LEVEL 1 r i...

I
,

CONTROL I
I I

LEVEL 2 Ir-------+---··.-~·--.

I
INPUT PROCESS OUTPUT

Figure 1. Hierarchy Chart: Basic Form

1.2-13



ANOPP STANDARDS

3

I
CONTROL

INPUT TO NEXT
LEVEL

';
i

...1

OUTPUT

I

.-----_----<1_._-----,

I:BPROCESS

I
I
I
I TRANS FORH

I ------II
I l-----,--~

,

PROCESS

CONTROLLER -j
I
r
i'.[- ...

j

I

SUBPROCESS 1

I
,---·.....L----r

. I

LEVEL 1

LEVEL 2

LEVEL

SUB
TRANSFORM

1

Figure 2. Hierarchy Chart: Basic Form

1. 2-14



LEVEL 3

LEVEL 4

TASK 1

DESIGN

TASK 2

!

-~
TASK 3

i- -II

LEVEL 5

SUBTASK 1 ! SUBTASK 2

I--

Figure 3. Hierarchy Chart: Basic Form

1. 2-15



--
l

O
b

ta
in

a
B

lo
ck

(D
SG

)

-
-
_

.
--

--
r-

i
!

I
-
T

r
1

.}
I

(-
'"

E
d

it
U

se
r

I
I

D
el

in
k

B
lo

ck
lRe

li
n

k
B

lo
ck

(D
ED

I~
_

_
I

(D
E

L
IN

K
)

I
_

(D
R

LN
K

,_
)_

_

R
ed

uc
e

B
lo

ck

l-
'

N i l-
'

0
'

IF
in

d
a

F
re

e
b

l p
B

lo
c
k

-J'
U

s
e
a
_

l
(D

U
B

L
:)

_.
~_

_

'I I
1•

(D
RD

D
CE

)
I

'-
--

~
_
I

~ o '"d '"d C
fJ >-
3

-
~

-II
R

es
er

v
e

B
lo

ck
I

.
(D

R
SR

V
E)

I
L

-.
-
-
'

F
ig

u
re

40
H

ie
ra

rc
h

y
C

h
ar

t

T
o

o
b

ta
in

a
b

lo
c
k

-
C

al
l

D
SG

(U
SE

R
,M

IN
,M

A
X

,I
D

X
,L

EN
G

TH
9

i
,i

'.
t'

i-
('

!i
(



DESIGN

1020402 Chapin Charts

A Chapin chart will be drawn for each module depicted on the

hierarchy chart. The drawn Chapin chart will detail the internal

logic of the module us-ing simple control structures. In a structured

program module, any program function can be performed using one of

four control structures. The Chapin forms for these structures are:

ao Simple sequence

-:j
b. IF THEN/ELSE

"----------

x

c. Repetition

DO WHILE

L,WHILE

d. CASE

A>B

CASE (I) depending on------

1.2-17

DO UNTIL

A> B



ANOPP STANDARDS

CASE I is really a generalization of the selection function (IF

THEN/ELSE) from a two-valued to a multi-valued operation.

Any kind of processing, any combination of decisions, and any

sort of logic can be accomodated with one of these control structures

or a combination of these control structures. Each structure is character­

ized by a single point of transfer of control into the structure and a

single point of transf~r out of the structure. The control structures

can be nested and still retain this characteristic.

A tricky situation, prevalent in

then

a+l¥a

DO UNTIL a=e

current practice, arises when a

designer desires to terminate

a repetition block upon e~countering

a specific condition p If this

termination is diagrammed as illustrated at the right, it violates the

single entry/single exit principle of structured programming. However,

equivalent logic is produced by using a multi-valued conqition in

the classical structure as shown below.

else

a+l=a

o UNTIL a=e or a=b

A program utilizing these control structures tends to have no

statement labels. (The actual implementation of these structures

in a non-structured language like FORTRAN will require the use of

1.2-18



DESIGN

statement labels. See Section 1.3 - CODING.) Utilizing these control

structures in a top-down design, a module will eliminate arbitrary

and capricious branching and result in a more precise flow of data.

The hand drawn Chapin charts (Figure 5) will be generated in the

design process for formal "walk through" reviews of the structured

design. The purpose of the review will be to uncover flaws in the design.

The Chapin chart will enable the reviewers to examine the entire

logic of the moduleo

In addition to the use of the restricted control structures,

the Chapin charts will also contain other attributes for ease of under­

standing. The chart will contain the title and name of the module.

The module name should be descriptive of the function performed by the

module and is the name that is used to reference the module (for example,

in a CALL statement).

The language for the Chapin chart should not be cryptic to the

point that only the designer understands the logico Neither should it

be so wordy that it can't fit in the box.

The use of the IF THEN/ELSE control structure will sometimes result

in a do-nothing or NULL statement from the question. It is preferred

that the NULL statement be designed and implemented from the ELSE path

of the questiono

1.2-19



ANOPP STANDARDS

CALL DECIDE(VARI,VARZ)
-

ENTRY

Set TAG to 1 for 1st CASE X

DO WHILE TAG< 4

DO CASE (1,1), (Z,Z), (3,3), (4,4), Depending on value of TAG

1 Z 3 4

CALL TAG1 CALL TAGZ CALL TAG3 CALL TAG4

IF TAG<3 NELSE

~+T~ ~Z+TA~
ELSE THEN EL~E ~uvu

CALL SMALLZ CALL GREATZ CALL SMALL1 CALL GREAT1

Increment TAG by I

EXIT

Purpose - To initialize TAG areas and build tables.

Date - Designed/9!30!75, JD - Coded!10!15!75, MP

Functions - Call individual T~G areas in sequence. On the
first two passes, build a small or large type one
table first depending upon the value o~ the input
parameter VARI. On the next two passes, build
a small or large type two table first depending
upon the value of the input parameter VAR2.

Inputs - VARI I if Great Table 1 is to be built f:i,rst!
VARI = 2 if Small Table 1 is to be built first
VARZ = 1 if Great Table 2 is to be built first
VARZ 2 if Small Table 2 is to be built first

Outputs - None

Figure 5. Typical Chapin chart with external specifications.

1. 2-20



DESIGN

Module lengths should be limited to a manageable size. No firm

rule can exist for size; however, the tendency is to have between 10 and

100 lines of executable statements. With this size, a single entry,

single exit, and no arbitrary jumps to other parts of the program, there

is little need for page-turning or holding several places which must

be referenced constantly.

The function performed by the module should be described in a single

sentence followed by an expanded description, if necessary. The expanded

description can be a narrative description, tables, etc., and should be

easily adaptable to card format for inclusion in the programming documentation.

There should be a precise description of all input and output data

for the module. It should include all parameters, any physical order,

size, type, and range of valid values. A full description of module

interconnections is necessary as it will usually affect any calling

module.

Any external effects should be explained, e.g., the reading of a

tape or printing.

The module name, functional description, input and output description,

and external effects will be called the module's external specifications.

For design, these items will be placed on the Chapin chart and/or additional

pages if necessary. These items will be prepared to be carried onto

the program listing as the first half of a module's prologue.

1.2-21



ANOPP STANDARDS

1.2.4.3 Pseudo Code

After the design "walk through" and approval, the Chapin chart will

be converted into indented control structure pseudo code in punched

card format. This will constitute the second half of the module's

prologue.

Pseudo code, English phrases derived from the Chapin chart, describes

the flow of the control structureo The simple sequence is a statement.

The IF THEN/ELSE structure is divided into three parts; (1) IF is usually a

one line question; (2) THEN is a statement to be executed if the answer

is true; and (3) ELSE is a statement if the answer is false. The THEN

statement and/or ELSE statement can be followed by other questions and/or

statements. The DO UNTIL, SO WHILE, and CASE are statements.

The pseudo code acts as a bridge between the design and coding

phases. It is a transformation of the highly graphi~, parallel vision,

Chapin charts into a form similar to the top-down, straight line, final

source code. As such, there are several guidelines for converting the

Chapin charts to pseudo code.

a. All decisions which alter the simple sequence flow of the

program will ~e shown. If, during coding, a FORTRAN flow altering

statement is introduced, it must be reflected in the pseudo

code.

b o All FORTRAN CALL statements must be reflected as a simple

sequence statement in pseudo code.

1.2-22



PSEUDO CODE

Calculate X, Y, Z coordinates

DESIGN

c. Each FORTRAN statement which is a simple sequence type does

not require a matching statement in the pseudo code if it is

part of a group of FORTRAN statements which performs a common

pseudo code statementn

Example:

FORTRAN STATEMENT

X

Y =-------
Z

d. The control statements IF, DO WHILE, DO UNTIL, and CASE always

denote additional statement(s) will follow. Each of these

control statements will use an appropriate END statement to denote

the end of a particular set. The END statement will be indented

the same number of columns as its subject. The END statements

are ENDIF, ENDDO, and ENDCASE.

e. The pseudo code will be written in a format with strict indentation

in each group and subgroup of statements for ease of under­

standing and clarity. See Section 1.3.1 - Source Code Documen­

tation for specific rules.

1.2-23





ANOPP STANDARDS

1.3 CODING

To ensure ease of understanding, maintaining, and interchanging of

ANOPP code, certain standards will be imposed. These standards encompass

both documentary comments and specific language statements. It is reco~

mended that any exceptions to standards be employed only within the bounds

of a specific module and not be allowed to couple with other modules.

1.3.1 Source Code Documentation

Comment statements in any programming language are both source

code and documentation. Thus, various kinds of descriptive information

which would normally appear in publishable programming documentation

can be captured as comments in the source code alsoa For ANOPP, design

and documentary information will be brought together and placed in the

program source listing. This information will be contained in a special

module prologue section at the beginning of a routine and in regular

comment statements interspersed among the executable statements of a

routine. The prologue section should explain the purpose and functioning

of a routine as well as the flow of control within the routine. If any

coding standard is violated, it must be noted in the prologue and, as

an additional comment, in the executable statements. The in-line comments are

supplementary in nature and should explain special cases or values and

other non-obvious implementations.

1.3-1



ANOPP STANDARDS

The first line of a routine is the program header~ be it PROGRAM,

SUBROUTINE, FUNCTION, BLOCK DATA, or IDENT. The module prologue will

appear immediately following the prognJ.m header and pl'eceding any other

lines of source code. The source code and optional comments will follow

the prologue.

The module prologue contains both descriptive information and a

pseudo code translation of the module's Chapin chart. The definition

of prologue contents and format is given below. An example of a prologue

is illustrated in Figure 1.

Column

1

5-9

10

10

10

10

10

10

5-9

3-8

10,15,20,etc.

Statement

* (all prologue cards have an asterisk in column
on.e)

BEGIN (begin prologue)

PURPOSE - narrative description of purpose

DATE - design-date-name, code-date-name, test-date-name

FUNCTION - narrative description of functions

INPUTS - input variables and settings

OUTPUTS - output variables and settings

DATA STRUCTURES - descriptions or references to
files, common blocks, table, etco used by this
module

ENTRY - (begin pseudo code)

Statement Number

Pseudo Statement (simple sequences and the following
sets of key words should be aligned in order
within a set: IF, THEN, ELSE, ENDIF; DO CASE,
CASE, ENDCASE; DO WHILE, DO UNTIL, ENDDO.
Subsequent substructures should be indented 5 spaces.

1. 3-2



CODING

SUBROUTINE DECIDE (VARl,VAR2)

«l- REGIN
«l- PURPO~E - TO INITIALIZE TAG AREAS AND RUlLO TABLES
o DATE - DSGN JKD 10/12115. CODE 8PN ]0/23/75, TEST
«l- FUNCTIONS - CALL INDIVIDUAL TAG AREAS IN SEQUENCE.
* IF TAG IS LESS THAN 3 BUILD SMALL OR
«l- LARGE TABLE DEPENDING ON PARAMETER
«l- VARI. IF TAG IS GREATER THAN? BUILD
* SECOND SET OF TABLES.
* INPUTS - VARI = 1 RUlLO GREAT TARLE 1
* = 2 BUILD SMALL TABLE 1
* VAR? = 1 BUILD GREAT TARLE 2
«l- = 2 RIJILO SMALL TARLE 2
«l- OUTPUTS - NONE
«l-

«l- FNTRY
«l-

* SET TAG EQUAL 1
* 20 DO WHILE TAG LESS THAN OR EQUAL 4
«l- DO CASE (1(40).(?,50).(3.60t,(4,70) ON TAG
* 40 CASE 1 CALL TAGl
* 50 CASE 2 CALL TAG2
* 60 CASE 3 CALL TAG3
«l- 70 CASE 4 CALL TAG4
* 80 ENOCASE
* IF TAG IS LESS THAN 1
* 100 THEN If VARI • TAG Ie:; EVEII!
* 110 TH~N CALL GREAT}
* 120 ELSE CALL SMALL}
* 130 fNnIF
* 140 ELSE IF VAR2 + TAG Ie:; EVEN
* 150 THrN CALL GREAT?
* 160 ELSE CALL SMALL?
* 110 ENDIE
* IBO ENDIF
* 190 INCREMENT TAG BY 1
4} 200 ENonO
* EXIT
** END
*

Figure 1. Prologue and executable statement listing.

1.3-3



ANOPP STANDARDS

INTEGER TAG,VAR1.VAR2
20 00 190 TAG=1,4

GO TO(40,50,60.70)TAG
40 CALL TaG1

GO TO AO
50 CALL TAG2

GO TO RO
60 CALL TAG3

GO TO AO
70 CAll TAG4
80 CONTINUE

I~(TAG-3) 100,140,140
100 IF (aNOT.««VAQ}+TAG)/2)02-(VARl+TAG)) .FQ.O») GO TO 120
110 CALL GqEATl

GO TO 130
120 CAll SMAlll
130 CONTINUE

GO TO lAO
140 IF (.NOT.««VAP2+TAGl/2)02-(VAR2+TAG)l .fQaO)) GO TO 160
ISO CALL GPEAT2

GO TO 170
160 CALL C;MAlL2
170 CONTINUE
l~n CONTINUE
190 CONTINUE
200 CONTINUE

RE"TURN
END

Figure 1. Prologue and executable statement listing. (Continued)

1. 3-4



5-8

5-7

CODING

EXIT (end pseudo code)

END (end prologue)

The statements in the pseudo code should be labeled with statement

numbers where appropriate. These numbers should be in numerically

ascending sequence from the top down. Corresponding FORTRAN statements in

the source code should be similarly numbered in the same top-down

sequence.

Section 1.2.4.3 described the design conversion from Chapin chart

to pseudo code. Section 1.3.2 will describe the translation from

pseudo code to FORTRAN source code. Thus, the pseudo code in the

prologue is a highly visible bridge between the module as designed and

the module as coded. Capturing this documentation in the source code

will simplify the tasks of understanding, testing, and maintaining

a module's code.

103.2 FORTRAN Language Standards

The requirements of ANOPP will impose certain restrictions on the

use of the normal FORTRAN language for two reasons. First, the require­

ment for machine independence demands the use of a FORTRAN subset that

operates compatibly on several manufacturer's computers. Second, the

set of requirements for structured programming and its attendant simple

logic structures demand several implementation algorithms since FORTRAN

is not a structured programming language 0

1.3-5



ANOPP STANDARDS

1.3.2.1 Machine Independence

FORTRAN, a high level compiler language, is relatively machine-

independent. Even so, standard FORTRAN (ANSI X3.9-l966) has not been

implemented by the same or different manufacturers to be completely

independent of machine architecture. However, a fundamental precept

of ANOPP development is to minimize implementation and conversion problems

on the major third generation scientific computers (CDC CYBER series,

IBM 360/370 series, UNIVAC 1100 series). To this end, ANOPP code will

conform to ANSI standards as defined in the FORTRAN Extended Version 4

Reference Manual (Control Data Publication Number 60305601) subject to the

restrictions listed below.

NON-ANSI constructions (indicated by shaded areas in the reference

manual) must not be employed. The following are standards that are to

be followed to maximize machine independence.

1. The magnitude of an integer constant or variable may not be

31greater than 2 - 1.

2. Subscripted variables should contain no more that 3 subscripts.

3. Array variables must be referenced with explicit subscripts,

e.g., A(l) = 0, not A = O.

4. A CONTINUE statement requires a FORTRAN statement number.

5. ~he PAUSE statement is not to be used.

6. The NAMELIST statement is not to be used.

7. Implied DO's in DATA statements are not allowed.

1.3-6



CODING

8. The last statement of a DO loop may not be a logical IF state-

mento

9. BLOCK DATA subprograms may contain only type (e.g., REAL,

INTEGER), DIMENSION, COMMON, and DATA statements.

10 0 All variables containing Hollerith data should be limited to

eight characters left-justified and blank-filled. The forms

nL and nR should not be used for Hollerith data. The form

nH should be used. When using A(i) format specification, i

must not exceed 8. A(3), A(6), A(8) are valid, A(lO) is

invalid.

11. Packed fields within a computer word should not be used.

12. Octal (0 or B) or Hex (2) in DATA or FOR1~T statements may

not be used.

13. Specification statements should precede any executable statement.

14. The order of specification statements should be as follows:

COMPLEX

DOUBLE PRECISION

REAL

INTEGER

LOGICAL

EXTERNAL

DIMENSION

COMHON

EQUIVALENCE

1.3-7



ANOPP STANDARDS

D~A

15. The variables in a COMMON block should be ordered as follows:

complex, double precision, real, integer, and logical.

16. Variables stored as single precision cannot be referenced as

double precision variables (via the FORTRAN EQUIVALENCE state­

ment) because of the different internal word storage format

for single and double precision words.

17. Caution must be exercised to insure that types (REAL, INTEGER,

etc.) of FORTRAN functions agree in the function subprogram and

in the calling program. This agreement between types is

necessary for machines (e.g., IBM 360) in which REAL and

INTEGER values of FORTRAN functions are returned in different

registers.

18. No attempt to extend the length of arrays through the EQUIVALENCE

statements should be made.

19. Caution must be exercised when using the EQUIVALENCE statement.

Optimizing compilers do not guarantee that the values used

for the equivalenced variables will be the expected value.

Hence, EQUIVALENCE should be used only between variables which

have non-intersecting use spans in a program. Storage and

retrieval of a variable value is not necessarily in the order

given by FORTRAN source.

20. Multiple entry routines and routines with nonstandard returns

are not to be used.

1.3-8



CODING

21. There must be agreement with respect to the number of arguments

and the type of each argument in the argument list of a calling

program and the called subroutine.

22. Only the carriage control character "I" may be used to control

printer paging. No spacing or suppression of spacing characters

may be used.

23. Modification of the length of an explicit type declaration

(e.g., REAL*8) is not allowed.

24. Deck (or member) names for subroutines should be six or less

characters and should agree with the primary entry point names.

Deck names for Block Data subprograms should end with the

characters "BD".

25. FUNCTION subprograms whose type is not implicit must be typed

in the FUNCTION statement. For example, use

DOUBLE PRECISION FUNCTION ABC (X)

and not

FUNCTION ABC (X)
DOUBLE PRECISION ABC

26. The name of a FUNCTION subprogram must appear somewhere within

the subprogram.

27. All subscripted variables appearing in EQUIVALENCE statements

must be subscripted, e.g. use EQUIVALENCE (A(l), XCI»

instead of EQUIVALENCE (A,X).

28. DO loop indices may not be greater than 217 - 1 (131,071).

29. Logical operations are permitted on non-logical variables only

1.3-9



ANOPP STANDARDS

using supplied functions lAND, lOR, ICOMPL, IXOR.

30. Subscripts may not contain subscripted variables.

31. Actual subroutine parameters that are changed by the called

subroutine must have unique locations.

Example: CALL SUB(A,A) where SUB is as follows:

SUBROUTINE SUB(C,D)
C = 10
RETURN
END

is not allowed.

32. No DATA statements for variables in common blocks outside

BLOCK DATA programs will be used.

33. Blank common will not be used.

34. ENCODE, DECODE, or similar installation or machine dependent

routines will not be used.

35. Branching into the range of a DO statement is not allowed.

36. It is preferred that the use of constant numbers for referencing

or indexing tables be restricted.

1. 3.2".2 Structured FORTRAN

FORTRAN is not a structured programming language. FORTRAN syntax

does not directly include the logic constructs defined in Section 1.2.3

and Section 1.2.4 of this document. However, several implementation

algorithms can be defined to permit adherence to the concept of structured

programming.

1. 3-10



CODING

1.3.2.2.1 Simple Sequence

FORTRAN syntax permits easy implementation of the simple sequence

structure. There is no need for statement numbers within the sequence

except for format statements that do not alter the flow of execution.

Entry to the sequence may require a statement number if it is entered

as the result of a previous branching structure.

Example:

Pseudo Code

GET X

COr1PUTE SQUARE ROOT OF X

PUT RESULT

1.3.2.2.2 IF THEN/ELSE

FORTRAN Code

READ 100, X

SX = SQRT(X)

PRINT 100, SX

FORTRAN syntax does not include an IF THEN/ELSE structure. However,

various combinations of Arithmetic If, Logical If, Go To, and Continue

statements can provide the two-branch logic desired. The rules for their

use are as follows:

1. The THEN path must precede the ELSE path in top-down order in

both the pseudo code and the FORTRAN code.

2 Q The ENDIF statement must be represented by a numbered Continue

statement.

3. The Arithmetic If statement with two of the three branches

equal is the preferred implementation.

4. The Logical If must be used with logical variables or multiple

1.3-11



ANOPP STANDARDS

relational expressions.

5. The Logical If must be implemented with a .NOT. condition and

a Go To the ELSE path.

Example 1: Arithmetic If

Pseudo Code

IF ANGLE .LE. 180

1 THEN COMPUTE SIN (ANGLE)

2 ELSE COl~UTE - SIN(180 - ANGLE)

3 ENDIF

Example 2: Logical If

FORTRAN Code

IF (PI - THETA) 2, 1, 1
(THETA - PI) 1, 1, 2

1 SINTH = SIN (THETA)
GO TO 3

2 SINTH = -SIN(PI - THETA)

3 CONTINUE

Pseudo Code FORTRAN Code

IF SWITCH is TRUE

THEN CALL SUBA

1 ELSE CALL SUBC

2 ENDIF

Example 3: ELSE path null

IF( .NOT. (SWITCH)) GO TO 1

CALL SUBA
GO TO 2

1 CALL SUBC

2 CONTINUE

IF X .LT. ZERO

Pseudo Code FORTRAN Code

IF (X) 1,2,2 (preferred)
(.NOT.(X .LT. 0)) GO TO .2

1 THEN X = ABS(X)

ELSE NULL

2 ENDIF

1. 3.7..7..3 CASE

1 X = ABS(X)

2 CONTINUE

DO CASE (condition 1, statement 1) ••..• (condition m, statement n) on test

1. 3-12



CODING

variable

The DO CASE structure can be implemented with a variety of pro-

gra~uing techniques employing a conbination of Go To, Computed Go To.

Logical If, Arithmetic If, and Continue statements. In all cases the

ENDCASE statement must be represented by a CONTINUE statement with a

statement number. Four basic examples are illustrated.

Example 1: Integer Test Variable

Pseudo Code

DO CASE (1 , 1) (2 , 2) (3 , 3) ( 4 , 4)
(5,5) on I

1 Process Control Statement 1

2 Process Control Statement 2

3 Process Control Statement 3

4 Process Control Statement 4

S Process Control Statement 5

6 ENDCASE

Example 2~ Arithmetic If

Pseudo Code- ..._~------

DO CASE (- ,I) (0,2) (+.3) on X

1 SX SQRT(-X)

2 SX 0

3 SX = SQRT(X)

4 ENDCASE

FORTRAN Code

GO TO (1, 2. 3, 4, 5) I

1 CALL PRCSl
GO TO 6

2 CALL PRCS2
GO TO 6

3 CALL PRCS]
GO TO 6

4 CALL PRCS4
GO TO 6

5 CALL PRCSS

6 CONTINUE

FORTRAN Code

IF (X) I, 2, 3

1 SX = SQRT(-X)
GO TO 4

2 SX = 0
GO TO 4

3 SX = SQRT(X)

4 CONTINUE

1. 3-13



ANOPP STANDARDS

Example 3 - Logical If with an executable statement

Pseudo Code

DO CASE ("A",l) ( I B",2) ("C",3)
("D",4) on NAME

1 CALL SUBA

2 CALL SUBB

3 CALL SUBC

4 CALL SUBD

5 ENDCASE

Example 4 - Logical If with Go To

Pseudo Code

CASE ("A",l) ("B",2) ("C",3)
(
IID",4) on NAME

1 CALL SUBA

2 CALL SUBB

3 CALL SUBC

4 CALL SUBD

5 ENDCASE

FORTRAN Code

1 IF (NAME •EQ. IRA) CALL SUBA

2 IF (NAME .EQ. lRB) CALL SUBB

3 IF (NAME .EQ. lRC) CALL SUBC

4 IF (NAME .EQ. lRD) CALL SUBD

5 CONTINUE

FORTRAN Code

IF (NAME .EQ. lRA) GO TO 1

IF (NAME .EQ. lRB) GO TO 2

IF (NAME .EQ. lRe) GO TO 3

IF (NAME .EQ. lRD) GO TO 4

GO TO 5

1 CALL SUBA

GO TO 5

2 CALL SUBB

GO TO 5

3 CALL SUBC

GO TO 5

4 CALL SUBD

5 CONTINUE

1. 3-14



CODING

1.3.2.2.4 DO WlIILE (condition) and DO UNTIL (condition)

The DO W1IILE structure implies that condition testing is done

before the sequence of operations is performed. The DO UNTIL structure

implies that the sequence of operations is performed at least once

before condition testing is done. These structures can be implemented

in FORTRAN with various combinations of Arithmetic If, Logical If,

Go To, Continue, and Do statements. The possible variations are too

myriad to enumerate specifically. However, the following standards

will promote adherence to the spirit of top-down structured programming.

1. A Do statement can be used for a DO UNTIL with an incrementing

condition.

2. If a Do statement is used for a DO W1IILE, then the condition

must be tested as the first statement inside the Do or as the

statement immediately pre~eding the Do if it is an incrementing

condition with variables instead of constants.

3. All FORTRAN Do loops must end with a numbered CONTINUE statement.

1.3.2.2.5 CONTINUE

A CONTINUE statement is used if required to insure that the DO

W1IILE or DO UNTIL will stand alone (i.e., not depend on the previous

or next pseudo code structure). A labeled CONTINUE statement' can

therefore appear in the FORTRAN code with a label number not appearing

in the Pseudo code. The label numbers should, of course, appear sequentially

in the FORTRAN code. Examples 1, 3, and 4 show a labeled CONTINUE not

1.3-15



ANOPP STANDARDS

shown in the Pseudo code but required for implementation. Example 2

shows the absence of any CONTINUE statement.

Example 1

Pseudo Code

DO UNTIL (TABLE(I)=NAME FOR
1=1 to TABLELENGTH)

10 ENDDO

Example 2

Pseudo Code

10 DO UNTIL A EQUALS B

ENDDO

Example 3

Pseudo Code

DO WHILE (I .LE. K FOR I = J
TO K)

10 ENDDO

FORTRAN Code

DO 9 1=1, LTAB

IF (TABLE(I) .EQ. NAME) GO TO 10

9 CONTINUE

10 CONTINUE

FORTRAN Code

10 ..... til CI 0 •

IF (N .NE. B) GO TO 10

FORTRAN Code

IF (J .GT. K) GO TO 10

DO 9 I=J ,K

9 CONTINUE

10 CONTINUE

1. 3-16



CODING

Example 4

Pseudo Code

DO WHILE (A EQUALS B OR C
GREATER THEN D)

10 ENDDO

1.3.3 Assembly Language Standards

FORTRAN Code

IF (.NOT.(A.EQ.B .OR. C.GT.D)
;'~GO TO 10

GO TO 9

10 CONTINUE

There is no unique assembly language that is compatible across

several manufacturers' computers. The assembly language standards for

ANOPP, then, fall into two categories: (1) general requests to adhere

to the spirit of structured programming and (2) specific interface

requirements between FORTRAN and assembly language subroutines for a

given machine.

1.3.3.1 General Rules

The following general rules will promote clarity and understanding

while adhering to the spirit of structured programming.

1. Each routine shall have a module prologue as described in

Section 1. 3.1.

2. Multiple entry points and non-standard returns are not allowed.

3. Self-modifying code is not permitted. Instructions can change

data only, they cannot change other instructions.

4. Assembly code must follow the same top down order as the pseudo code.

1. 3-17



ANOPP STANDARDS

5. Liberal use of comments is recommended for clarity and understanding.

6. The prologue's pseudo code should be repeated in appropriate

comment fields of assembly statements.

7. Local macro definitions should be found after the prologue

at the beginning of a routine.

8. System macroes should briefly be .explained and a document

reference cited.

1.3.3.2 C01~ASS/FORTRAN Interface

Several conventions must be observed when FORTRAN and COMPASS

subroutines are intermixed. For FORTRAN Extended, the conventions are

explained in the Reference Manual (CDC Pub. No. 60305600). A brief

list follows:

1. Every COMPASS subroutine shall have:

a. IDENT and END cards beginning in column 11,

b. A trace word of the form VFD 42/name, l8/entry address,

c, An entry point of the form name DATA O.

d. An entry point name agreeing with the deck name on the

IDENT statement,

e. Register AO saved on entry and restored upon exit.

2. Function subroutines shall return single precision values in

register X6; double precision and complex values are returned

in registers X6 and X7,

3. Subroutine and function calls are performed by a return jump

sequence with trace information and argument addresses passed

1.3-18



CODING

through an argument list. The form is as follows:

SAl ARGLIST

+ RJ

VFD

ARGLIST VFD

VFD

VFD

VFD

=X external subprogram name

12/line number, 18/trace word address

60/ARGl address

60/ARG2 address

60/ARGM address

60/0 end of argument address list

103-19



***
*
*p
)': R

* 0
* L
* 0
* G
-k U

* E
'*
***

ANOPP STANDARDS

IDENT SAMPLE

TRACE
TEMPAO
EXIT

SAMPLE

ENTRY
VFD
DATA
SAl
SAO
DATA
SX6
SA6
SAO

SAMPLE
42/0LSAMPLE.18/SM~LE

o
TEMPAO
Xl
o
AO
TEMPAO
Al

Trace word
Holding location for AO
Restore AO

Entry point
Save AO

Save input argument list
address

SAl ALIST
+ RJ =XSUB

VFD 12/*-TRACE,18/TRACE

SAl AO+l
SAl Xl

Call SUB(A,B,C)

Fetch 2nd argument

ALIST

A
B
C

EQ EXIT Restore AO and return through entry point

VFD 60/A Address of A
VFD 60/B Address of B
VFD 60/C Address of C
VFD 60/0 End of argument list
DATA 0 Storage for A
DATA 0 Storage for B
DATA 0 Storage for C

END

Figure 2. Sample parts of COMPASS routine.

1.3-20



ANOPP STANDARDS

1.4 TESTS

Testing is the activity that takes coded pseudo and FORTRAN

statements and removes compiler statement errors, input formatting

errors, output formatting errors, and program structural and logic

errors. The testing activity is composed of (1) desk checking,

(2) component testing, (3) integration testing, and (4) system testing.

1.4.1 Desk Checking

Upon completion of coding of the FORTRAN or assembly statements

for a module, the product should be reviewed with the Chapin Chart and

the pseudo code for completeness and accuracy. The module is compiled

and all compiler generated errors are removed to obtain an error-free

compilation.

1.4.2 Component Testing

Component or isolation testing is that activity which takes a

module, exercises it through its full range of inputs and outputs,

and evaluates its performance for any necessary correction. Each and

every path of a module must be exercised during component testing.

Stubs for other modules that are referenced must be generated to allow

a smooth run to completion.

Standards for component testing will produce tests that will:

1. exercise typical error free cases,

2. exercise error free worst case,

1.4-1



ANOPP STANDARDS

3. produce each error code,

4. produce variations of errors,

5. vary all system parameters affecting the module for the

ab ove runs, and

6. vary user options affecting the module for the above runs.

1.4.3 Int~ration Testing

After component testing, the module is integrated into the program.

In the figure below, all modules designated with I are integrated and

the modules designated with N are not integrated. A module is never

integrated into the program unless it is subordinate to a previously

integrated module.

N

I__ I
N

- --l
_L -- ---j

---------- -- -

I

When a module is integrated into the program, integration tests

will be performed. Integration and testing is the activity which

places the tested module into the program and exercises the module.

1.4-2



TESTS

The module is exercised as thoroughly as possible for interaction

with other modules. The tests should check for:

1. typical case with no errors,

2. worst case with no errors,

a. efficiency

b. any designed limits

3. each error code,

4. all possible errors in one entry,

5. various typical cases,

6. various system parameters that affect the module, and

7. various user options that affect the module.

The test cases and results of integration tests will be documented

and saved for later use. These test cases can be used to determine if

the program is operating as designed.

1.4.4 System Tests

System testing is the activity of exercising the program utilizing

all inputs in various combinations. According to the concepts of

structured programming and top-down module integration, as the last

module is integrated and tested, testing of the entire program will

be complete. However, tests will be conducted for:

1. the ANOPP control statement stream with no errors and composed

of

a. simple sequences,

1.4-3



ANOPP STANDARDS

b. various typical combinations, and

c. worst case combinations;

2. the ANOPP control statement stream with errors, such as,

a. meaningless input,

b. no input,

c. stacked sets of input, and

d. errors;

3. all system parameters for

a. typical settings,

b. special cases,

c. worst cases, and

d. illegal values.

1.4-4



ANOPP STANDARDS

1.5 PUBLISHABLE DOCUMENTATION

1.5.1 Types of Publishable Documentation

A program of ANOPP's magnitude requires clear and complete docu­

mentation to be of value to users and programmers. Engineers and

users must understand the available prediction capabilities and

know how to formulate a problem and obtain a solution. Programmers

must know how to install, modify, and add to the system. Such docu­

mentation will be provided in four separate, indexed, stand-alone

documents:

1. Programmers's Manual,

2. Theoretical Manual,

3. User's Manual, and

4. Demonstration Problem Manual.

1.5.1.1 Programmer's Manual

The Programmer's Manual will contain all coding information and

specifications for the Aircraft Noise Prediction Program. It will

be written for use by programmers to install, execute, modify, and

add modules to the program. As such, it will contain:

1. a detailed introduction that will describe the concepts

and functions of ANOPP;

2. the standards for design, coding, testing and program documentation

to insure compatibility and ease of maintenance;

1.5-1



ANOPP STANDARDS

3. description of data and tables;

4. executive, data management, utility, and functional module

descriptions;

5. instructions for installation and operation;

6. instructions for modification and addition of modules to the

system;

7. support program descriptions; and

8. easily updated index.

1.5.1.2 Theoretical Manual

The Theoretical (or methods) Manual will provide a concise math­

matical description of the methods employed in the computational

or functional modules. It will describe the analytical or empirical

methods and will outline the methods of solution, including all implicit

and explicit assumptions, limits of use and limits of accuracy.

References to published material should be included in the text and the

index. A user can refer to this manual to determine the engineering

and mathematical methods that are available in the program.

1.5.1.3 User's Manual

The User's Manual will be structured to accommodate the needs of

different levels of users. A user will employ this manual to formulate

problems and anticipate results. The manual will provide instructions

and descriptions for the preparation of problem data and explain how

1.5-2



PUBLISHABLE DOCUMENTATION

to invoke the various options provided for problem solution. The

User's Manual will thoroughly explain the Executive Control Language

and general related capabilities.

1.5.1.4 Demonstration Problem Manual

The Demonstration Problem Manual will contain detailed descriptions

of sample problem input and solutions. This manual will be utilized for

user education and system validation. It will be beneficial to the

engineer user and his programming staff.

1.5.2 Publishable Manual Preparation

1.5.3.1 General

ANOPP documentation will be tvned on 11" x 14" mats that wiLl

be supplied by ANOPO. These mats will be reduced to 80 percent of

their original size during the printing process.

Documents will be prepared using tape cassettes compatible with the

equipment available to ANOPO. The equipment available to ANOPO is

an IBM MAG Card II Typewriter, System Model No. 6616; specifications:

2 cassette dual pitch word processing system.

The cassette tapes of the ANOPP manuals will be furnished to

ANOPO with an index to facilitate cataloging and filing the tapes.

Computer printout used in the manuals must be clear and sharp.

To ensure this, the unlined side of the computer paper should be used

1.5-3



ANOPP STANDARDS

and a new ribbon should be inserted on the printer.

To change camera-ready manuscripts, correction tape is preferred

over mortising (i.e., cutting and pasting). Also, for one-letter

corrections, a chalk-like substance may be used. ERASURES Al~D OPAQUE

WHITE CORRECTION FLUID ARE NOT ACCEPTABLE.

Minor modifications to pages of published ANOPP documentation

will be communicated to ANOPO by means of the Documentation Change

Report (nCR).

The general format of the manuals will be:

1. Front Cover

2. Inside Cover Page

3. Preface

4. Table of Contents

5. Page Status Log

6. Text Body

7. References

8. Index

9. Back Cover

1.5.2.2 Spacing

Double-spacing will be used except where groups of a few single­

spaced lines separated by double-spacing for the groups is more desirable

for clarity or appearance. An example of the exception could be

DATA BLOCK DESCRIPTIONS.

1.5-4



PUBLISHABLE DOCUMENTATION

Paragraphs will be indented 5 spaces and will be separated from

each other by 2-1/2 lines. A line associated with an unnumbered,

underlined explanatory heading will be indented 5 spaces.

Section and subsection titles will be separated from the text

(above and below the title and from each other) by 3 lines.

1.5.2.3 Section Numbering

Major sections, i.e., those with one number, will be typed with

all uppercase letters and will be identified with a decimal classification,

i.e., one number followed by a period, as follows:

12. DOCUMENTATION

Major subsections, i.e., those with two numbers, will be typed

with all uppercase letters and will be identified with a decimal

classification and two numbers, as follows:

12.2 MANUAL PREPARATION

Minor subsections, i.e., those with three numbers, will be typed

with initial capitals, underlined, and identified with a decimal

classification and three numbers, as follows:

12.2.5 Contents of Manual

Further subdivision of minor subsections will be typed with

initial capitals, will not be underlined, and will be identified with

a decimal classification and four or more numbers, as follows:

12.2.5.3 Text Printing

1.5-5



Original page

Changed page

M~OPP STANDARDS

1.5.2.4 Page Numbering and Running Headings

Major subsections will begin at the top of an odd-numbered page.

(Odd-numbered pages will be printed on the right and even-numbered

pages will be printed on the left.) Module descriptions should begin

at the top of an odd-numbered page. Other units such as Data and

Table Descriptions should begin at the top of a page where clarity

or convenience of use is thereby improved. In the case of large

major subsections, minor subsections may begin at the top to the next page.

Page numbers will be centered at the bottom of each page.

The number will indicate the major subsection identifier and page number

within the subsection, separated by a hypheno Examples are:

6.1-1

6.1-2

6.1-3

The numbers of pages changed at a later date will use the format of

major subsection identifier, hyphen, page number followed by the date

of the change (mm/dd/yy), as follows:

6.1-1

6.1-2 (12/09/75)

Pages inserted at a later date will be identified by the major

subsection identifier, hyphen, page number, decimal and number followed

by the date of the insertion in the form (mm/dd/yy), as follows:

1.5-6



PUBLISHABLE DOCUMENTATION

6.1-1

6.1-2 (12/09/75)

6.1-2.1 (12/09/75)

6 0 1-2.2 (12/09/75)

6.1-3

Original page

Changed page

Added page

Added page

Original page

If an odd number of pages is to be inserted, one blank page with a

running header and a page number should be added to ensure consistency.

Such a blank page will contain the following sentence: THIS PAGE

HAS BEEN LEFT BLANK INTENTIONALLY.

Pages inserted at a later date between pages of insertions made

subsequent to the original issue will be identified by the major

subsection identification number, hyphen, page number, decimal, added

page, decimal, inserted page and date as follows:

6.1-1

6.1-2 (12/09/75)

6.1-2.1 (12/09/75)

6.1-2.1.1 (01/10/76)

6.1-2.1.2 (01/10/76)

6.1-2.2 (12/09/75)

6.1-3

Original page

Changed page

Added page

Inserted page

Inserted page

Added page

Original page

Running headers, in capitals, will be centered at the top of each

page. The major section name will be used as the running header

on EVEN-NUMBERED PAGES, and the major subsection name will be used as

the running header on ODD-NUMBERED PAGES. There is one major exception

1.5-7



ANOPP STANDARDS

to this rule: for the first page in every major subsection, the major

section name will be used as the running header. Care must be exercised

in determining running headers for pages to be inserted. For example,

the page to be inserted between 6.1-3 and 6.1-4 is 6.1-3.1 and is

considered to be an even-numbered page for the purpose of determining

the running header. The reason for this is that 6.1-3.1, being printed

on the back of 6.1-3 (an odd-numbered page) is in effect an even­

numbered page. A blank "odd-numbered" page, 6.1-302, with subsection

running header and page number must be typed to ensure consistency.

This blank page will contain the following sentence: THIS PAGE HAS

BEEN LEFT BLANK INTENTIONALLY.

1.5.2.5 Equations

Equations will be numbered consecutively beginning with 1 for the

first equation in each major subsection. References to equations

outside a major subsection must refer to both the equation number and

the major subsection number, e.g., See Section 5.6, Equation 12. If

the reference is to another manual, the manual name (Theoretical Manual,

User's Manual, Programmer's Manual) will be given, e.g., See ANOPP

Theoretical Manual, Section 5.6, Equation 12.

Equations will be centered on the line and separated from the

text by three blank lines. Equations will be punctuated as part of

the text and will be identified at the righthand margin with its

Arabic numeral equation number in parenthesis.

1.5-8



PUBLISHABLE DOCUMENTATION

When a group of equations appears in succession without text

between them, the longest equation will be centered and the equal signs

of the remaining equations will be aligned with the equal sign of the

longest equation.

The transpose operator for a matrix should be placed outside

h b k ( . [A] T . [AT J .. ) ht e rac ets 1.e., _ lS correct; lS lllcorrect. T e same

[A -JIrule applies to the inverse operation (i.e.,

[A-I] is incorrect).

is correct;

All subscripts for matrices will be lowercase letters (e.g.,

All plus and minus signs in equations will be preceded and followed

by one space. There will be two spaces before and after all equal signs

in equations. There will be no spaces between parenthetical expressions.

For example: ( A )( B ) + ( D ) C

Equations inserted at a later date will be numbered as decimal parts

of the preceding equation. For example, two equations inserted between

Equation 5 and Equation 6 will be designated by Equation 5.1 and

Equation 5.2, respectively. For more complicated cases, follow the

rules given in Section 1.5.2.4 of this document.

1.5.2.6 Tables, Figures, and References

Tables and figures will be numbered consecutively beginning

with the first table or figure in each major subsection. References to

1.5-9



ANOPP STANDARDS

tables and figures outside a major subsection must refer to both the

table or figure number and the major subsection number, e.g., See Section

5.6, Table 2. If the reference is to another manual, the manual name

(ANOPP Theoretical Manual, ANOPP User's Manual, ANOPP Programmer's

Manual) will be given, e.g., See ANOPP User's Manual, Section 5.2,

Table 2.

Table titles will be typed with initial capitals. Periods will

follow the Arabic table number and the end of the complete title

as follows:

Table 3. This Is an Example of a Table Title.

Figure captions will be typed in lower case letters except for

the first letter of the first word. Periods will follow the Arabic

figure number and the end of the complete caption as follows:

Figure 4. This is an example of a figure caption.

Single line captions will be centered under the figure, and mu1tiple­

line captions will be left-justified with the last line centered.

References will be listed at the end of each major section and will

be numbered consecutively beginning with 1 for the first reference in

each major section.

Tables, figures, and references inserted at a later date will be

designated by a number followed by a decimal and number. For example,

two figures inserted between Figure 2 and Figure 3 will be designated

Figure 2.1 and Figure 202, respectively.

1.5-10



PUBLISHABLE DOCUMENTATION

The words Equation, Figure, Reference, Section, and Table will be

spelled out with initial capitals when used either in the text or in a

caption. The associated Arabic numeral will not be enclosed in

parentheses.

1.5.2.7 Capitalization

Data block names, module names, Data card names, entry point names,

and FORTRAN variable names will all be capitalized and the letter a will be

slashed (¢).

Care should be exercised in the use of initial capitals. Formal

type names should be capitalized throughout the manuals.

1.5.2.8 Punctuation

Commas will be used to separate the elements in a series and a

comma will be placed ~fore the final conjunction.

For punctuation of potential executable statement~, punctuation

characters should be representative of the actual coded statement.

1.5.3 Changes to Baseline Manuals

The four ANOPP MANUALS (Theoretical Manual. User's Manual,

Programmer 9 s Manual, and Demonstration Problem Manual) when delivered

to ANOPO via paper, called mats, and IBM MAG Card II compatible cards

constitute baseline documents. When information in a baseline document

is added, deleted, or changed, a formal written update to the baseline

1.5-11



ANOPP STANDARDS

document is required.

To initiate a change to a baseline document, a Documentation

Change Report (DCR) is required and must be submitted to the maintenance

organization. A DCR is shown in Figure 1.

The report will be reviewed by the maintenance organization and/or

ANOPO for appropriateness and extent of change. Changes to manuals

can affect software. The results of the reviews will consist of comments,

required changes, and suggested changes as well as rejection or acceptance

of the change. If the change is unacceptable, the submitter will

be so informed and told what action must be taken prior to resubmission.

If the change is acceptable, the maintenance organization will be informed

so the change can be incorporated into existing mats and cassettes.

If the change affects software, a Software Change Report (SCR) must

be submitted with the DCR. If the change affects more than one manual,

those manuals and page numbers must be indicated in the CO}lliENTS of the

DCR.

All changes will be rigidly controlled, reviewed, cataloged,

accounted, and filed. Documentation Page Status Logs (DPSL) will be

maintained for and in each manual. A Documentation Change Report Status

Log will be maintained with the changes for each manual. If a change

affects more than one manual, it will be checked on the primary

Documentation Change Request Report Status Log by the DCR number.

1.5-12



.1

,

PUBLISHABLE DOCUMENTATION

DCR No.

DCR No.

ANOPP DOCUMENTATION CHANGE REPORT (DCR)

Originator: Date:-----------

Organization: Phone No.:

Manual Theoretical

User's

Programmer's

Demonstration

Page
Numbers

Description and reason of change:

(Attach a copy of the page(s) to be changed with corrections typed. Use separate
pages if necessary.)

Connnents

..

Editor ANOPP DPSL Change ANOPO Editor DPSL
Approval Approval Entry Made Verif. Verif. Entry

Date Date Date Date Date Date Date

Figure 1. ANOPP DOCU}lliNTATION CHANGE REPORT (DCR)

1. 5-13




